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a b s t r a c t

We present special numerical simulation methods for non-isothermal incompressible vis-
cous fluids which are based on LBB-stable FEM discretization techniques together with
monolithic multigrid solvers. For time discretization, we apply the fully implicit Crank–
Nicolson scheme of 2nd order accuracy while we utilize the high order Q2P1 finite element
pair for discretization in space which can be applied on general meshes together with local
grid refinement strategies including hanging nodes. To treat the nonlinearities in each time
step as well as for direct steady approaches, the resulting discrete systems are solved via a
Newton method based on divided differences to calculate explicitly the Jacobian matrices.
In each nonlinear step, the coupled linear subproblems are solved simultaneously for all
quantities by means of a monolithic multigrid method with local multilevel pressure Schur
complement smoothers of Vanka type. For validation and evaluation of the presented
methodology, we perform the MIT benchmark 2001 [M.A. Christon, P.M. Gresho, S.B. Sut-
ton, Computational predictability of natural convection flows in enclosures, in: First MIT
Conference on Computational Fluid and Solid Mechanics, vol. 40, Elsevier, 2001, pp.
1465–1468] of natural convection flow in enclosures to compare our results with respect
to accuracy and efficiency. Additionally, we simulate problems with temperature and shear
dependent viscosity and analyze the effect of an additional dissipation term inside the
energy equation. Moreover, we discuss how these FEM-multigrid techniques can be
extended to monolithic approaches for viscoelastic flow problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The underlying ‘basic’ flow model in this paper is governed by the Navier–Stokes equations which arise from the classical
equations of continuity
r � u ¼ 0 ð1Þ
and the equations of motion with a body force term which is written as Boussinesq approximation
q
@u
@t
þ qu � ru ¼ r � Tþ qð1� cHÞj; ð2Þ
. All rights reserved.
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where T ¼ �pI þ 2gD describes the constitutive material law; here, g may depend on the shear rate as well as on the temper-
ature. Consequently, the Navier–Stokes equations are coupled with an energy equation to include the effect of temperature
@H
@t
þ u � rH ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

RaPr
p r2H; ð3Þ
where u;q; c; j; p;g;D; Pr;Ra;H are the velocity, density, thermal expansion, gravity vector, pressure, viscosity, symmetric
part of gradient velocity, Prandtl number, Rayleigh number and temperature (see [6] for details). Moreover, we might also
allow additional viscous dissipation terms in the energy equation which lead to more complex couplings.

Such non-isothermal nonlinear flow is very important in numerous applications since it is the basis of many complex flow
problems with viscoelastic and multiphase fluids. Air flow inside a combustion engine or polymer flow in an injection mold-
ing or fluid flow in a heat exchanger are only few examples of viscous fluids where temperature is an important unknown. It
becomes even more important when the fluid viscosity is temperature dependent: in this case, the temperature will indi-
rectly give impact onto the velocity field through the viscosity, as we shall examine in Section 4.

One of the main issues for such simulations, besides the robustness and efficiency, is a reliable accuracy of the numerical
solution. That leads us to utilize the LBB-stable conforming finite element pair Q 2P1 which in our opinion belongs to the best
finite element pairs regarding accuracy and robustness (see [1,14], the contributions according to [14] and in the proceeding
[2]) for highly viscous incompressible flow, particularly together with local grid refinement techniques via hanging nodes. To
preserve the high accuracy and robustness in nonstationary flow simulations, we apply implicit 2nd order time-stepping
methods, for instance the Crank–Nicolson or Fractional-Step-h scheme, which allow adaptive time stepping due to accuracy
reasons only (see [25,28] for the corresponding details), but which do not depend on CFL-like restrictions.

However, the ‘price’ to be paid for the enhanced accuracy and robustness properties of such fully coupled approaches is
the more expensive solution of the resulting coupled nonlinear discrete systems, either in each time step or in a direct sta-
tionary approach. While operator-splitting schemes, for instance classical projection or pressure correction methods, reduce
the complete solution to a sequence of much easier scalar problems, the outer coupling of such subproblems towards the
fully coupled solution is still a challenging problem, particularly if the energy equation has to be taken into account or in
the case of shear, resp., temperature-dependent viscosities. The key problem in such approaches is the construction of opti-
mal pressure Schur complement operators for updating the pressure which is even for the isothermal Navier–Stokes equa-
tions a challenge (see [16] for an overview). As an alternative, fully monolithic solvers have proven to be competitive, as
demonstrated in [18,21,23] for non-isothermal problems as well as in [14,29,30] for fluid-structure interaction problems.
Here, a Newton-like method is applied as outer iteration, which approximates the Jacobian matrices analytically or in a Black
Box-like manner via divided differences, while the resulting linear systems are usually treated via Krylov space methods (see
[7,15,19]). However, such Krylov space methods, like for instance BiCGStab or GMRES even with highly sophisticated precon-
ditioners, typically suffer from convergence problems since the numerical behaviour strongly depends on the mesh size. In
contrast, we discuss special monolithic multigrid solvers which exploit the underlying hierarchical mesh structures such
that a mesh-independent and (almost) parameter-independent convergence behaviour can be obtained.

This paper is structured as follows: In the following Section 2, we discretize the flow problem in two space dimensions by
utilizing the Q 2P1 finite element pair in a standard FEM approach, after applying a standard implicit one-step time-stepping
scheme in the nonstationary case. In Section 3, we treat the resulting discrete problems in a fully coupled monolithic way for
(u;H; p) by utilizing outer Newton iterations and inner multigrid solvers with special smoothers such that we maintain high
efficiency and robustness, even on general meshes allowing the use of hanging nodes. In the numerical Section 4, we first con-
sider natural convection flow in enclosures from the well-known MIT benchmark 2001 [5] to analyze the accuracy and effi-
ciency of our new techniques for non-isothermal flow. This problem is well suited from the numerical point a view due to its
simple geometry while at the same time complex phenomena in space and time arise. Moreover, this benchmark provides a
large set of data for different approaches and methods to compare. Additionally, we demonstrate the numerical properties of
the described methodology for non-isothermal flow with temperature and shear-rate dependent viscosity, and examine the
numerical behaviour for additional viscous dissipation terms in the energy equation. Finally, we shortly discuss the natural
extension of this monolithic approach for more complex nonlinear flow problems, particularly for viscoelastic fluids which
require the coupling of the Navier–Stokes equations with tensor-valued differential equations for the extra stress.

2. Spatial and time discretization

2.1. Implicit time stepping

In the case of a standard one-step method, we need to solve for velocity, temperature and pressure at the current time
step, nþ 1, with known values only from the previous time step, n. Then, as usual [25], the Navier–Stokes equations are dis-
cretized in time as follows
unþ1 � un

Dt
þ h unþ1 � runþ1 � ð1� cHnþ1Þj� 1

q
ð2r � gDðunþ1ÞÞ

� �
þ 1

q
rpnþ1

þ ð1� hÞ un � run � ð1� cHnÞj� 1
q
ð2r � gDðunÞÞ

� �
¼ 0; ð4Þ
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r � unþ1 ¼ 0; ð5Þ
where un � uðtnÞ. The energy equation is discretized in the same way so that
Hnþ1 �Hn

Dt
þ h unþ1 � rHnþ1 � 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p DHnþ1

� �
þ ð1� hÞ un � rHn � 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p DHn

� �
¼ 0: ð6Þ
By choosing, for instance, h ¼ 1
2, we obtain the fully implicit Crank–Nicolson method with second order accuracy which will

be used in the following.

2.2. The conforming Stokes element Q2P1

After discretizing the system in time by the Crank–Nicolson scheme, leading to Eqs. (4)–(6), we discretize them in space
by the finite element method using the Q2P1 element pair in two dimension. By Q 2P1 we mean the standard biquadratic
space with nine local degrees of freedom for each velocity/temperature component and three degrees of freedom for a piece-
wise linear discontinuous pressure approximation in each element. In 2D, there are in total 30 degrees of freedoms in each
element consisting of velocity, temperature and pressure variables (see Fig. 1).

In order to reduce the global degrees of freedom, we also allow to apply local grid refinement techniques by using hanging
nodes in a proper way where the values at hanging nodes must satisfy the continuity constraint of the neighboring nodes so
that the finite element function remains globally continuous and hence conforming (see [3,17,32]). The refinement is done a
priori, i.e. without any error indicator.

As usual we define the finite dimensional spaces Wh for temperature, Vh for velocity and Lh for the pressure approxima-
tions as
Wh :¼ wh 2 H1
0ðXhÞj whjT 2 Q2ðTÞ 8T 2 Th; wh ¼ 0 on @Xh

n o
; ð7Þ

Vh :¼Wh �Wh; and ð8Þ

Lh :¼ lh 2 L2ðXhÞj lhjT 2 P1ðTÞ 8T 2 Th

n o
; ð9Þ
and consider for each T 2 Th the standard bilinear transformation wT : bT ! T from the reference element bT to the unit square
T. Then, Q 2ðTÞ is defined as
Q 2ðTÞ :¼ q � w�1
T jq 2 spanh1; x; y; xy; x2; y2; x2y; y2x; x2y2i

� �
ð10Þ
with local degrees of freedom located at the vertices, at the midpoints of the edges and in the center of the quadrilateral T.
The space P1ðTÞ consists of linear functions defined by
P1ðTÞ ¼ q � w�1
T : q 2 spanh1; x; yi

� �
ð11Þ
with the function values and both partial derivatives located in the center of each quadrilateral T, leading to three local de-
grees of freedom which gives a discontinuous pressure.

Regarding stability and accuracy properties of this element pair, the inf–sup condition is satisfied (see [4]); however, the
combination of the bilinear transformation wT with a linear function on the reference square would imply that the basis on
the reference square does not contain the full bilinear basis. So, the method can be only first order accurate on general
meshes (see [1,4])
kp� phk0 ¼ OðhÞ: ð12Þ
The standard remedy is to consider a local coordinate system ðn;gÞ obtained by joining the midpoints of the opposing
faces of T (see [1,20,27]). Then, we set on each element T
P1ðTÞ :¼ spanh1; n;gi: ð13Þ
For this case, the inf–sup condition is also satisfied and the second order approximation is recovered for the pressure as well
as for the velocity gradient (see [4,12])
kp� phk0 ¼ Oðh2Þ and kru�ruhk0 ¼ Oðh2Þ: ð14Þ
Velocity Vx,Vy

Temperature Θ

x, Py

Fig. 1. Left: Local degrees of freedom for Q2P1. Right: Locally refined element.
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For a smooth solution, the approximation error for the velocity in the L2-norm is of order Oðh3Þ which can be easily demon-
strated for prescribed polynomials or for smooth data on appropriate domains.

Finally, by rearranging the discretized equations (4)–(6) into algebraic systems, we end up with the following compact
form of nonlinear system of equations in each time step
Suðunþ1Þunþ1 þ jMHHnþ1 þ Bpnþ1 ¼ f ðnþ 1;nÞ;
SHðunþ1ÞHnþ1 ¼ gðnþ 1; nÞ;
BT unþ1 ¼ 0

8><>: ð15Þ
with S describing the reactive, diffusive, and convective terms from the governing equations above, and u ¼ ðu;vÞ consisting
of components u and v, while M and B describing the mass matrix and gradient matrix.

3. Iterative solvers

Applying the standard finite element method with the Q 2P1 element pair as described above, this approach leads to non-
linear systems of equations as indicated in (15). Each nonlinear system is then solved by a Newton iteration which has a
well-known quadratic convergence if the initial solution is chosen close enough to the exact solution (see [15,19,26] which
shows the excellent convergence rates of Newton iteration in comparison with fixed point methods for non-isothermal
flow).

The basic idea of the Newton iteration is to find a root of a function, RðXÞ ¼ 0, using the available known function value
and its first derivative,
Xlþ1 ¼ Xl þxlj�1ðXlÞRðXlÞ ð16Þ
with X ¼ ðuh;vh;Hh; phÞ in our setting and jðXlÞ ¼ @RðXlÞ
@X

h i
is the Jacobian matrix. Here, RðXlÞ ¼ def l

u def l
v def l

H def l
p

� �T
is

the residual coming from the discrete problem of the system (15) and xl is some damping parameter which has to be deter-
mined such that certain error measures decrease (see [11] and for implementation see also [14,27]). In the next step we will
discuss how to deal with the Jacobian before we discuss how to solve the linear subproblems in each nonlinear step. In our
approach, we approximate the first derivative (the Jacobian) using divided differences
@RðXlÞ
@X

" #
ij

� RiðXl þ �ejÞ � RiðXl � �ejÞ
2�

; ð17Þ
where ej ¼ dij is the standard Kronecker symbol. Another possibility is to calculate the Frechét derivative at the continuous
level, which however can be very complicated for complex nonlinear flow models (see [26,27]).

For small system (i.e. less than 20.000 unknowns) a direct linear solver like UMFPACK is often preferable. But for large
system, its memory requirement is far too high. Therefore, we choose as an alternative a multigrid method which is today
one of the fastest iterative linear solvers for CFD problems (see [33]). Inside multigrid, a restriction operator is applied to the
residual after pre-smoothing on the actual mesh level and a direct linear solver is utilized to obtain the coarsest grid solution.
Prolongation is then applied which is followed by post-smoothing to give a better approximation. These steps continue until
a V or F-cycle of multigrid iterations is finished. We use a fixed number of smoothing steps of a special ‘Vanka’ smoother
which acts locally in each element Xi on all levels and which can be written as
ukþ1

vkþ1

Hkþ1

pkþ1

0BBB@
1CCCA ¼

uk

vk

Hk

pk

0BBB@
1CCCA�xk

X
Xi

SuujXi
Suv jXi

j1MjXi
BujXi

SvujXi
Svv jXi

j2MjXi
Bv jXi

SHujXi
SHv jXi

SHjXi
0

BT
ujXi

BT
v jXi

0 0

0BBBB@
1CCCCA
�1

RðXkÞ ð18Þ
with RðXkÞ ¼ defk
u defk

v defk
H defk

p

� �T
(see [27,31,8] for more details).

Here, the ‘summation’ over each element represents an assembling technique. The above iteration is adapted to the lin-
earization of Eq. (15) where the additional nonzero blocks inside the Jacobian arise from the dependency on the vector of
unknowns of the nonzero blocks in Eq. (15). For example, in the temperature equation of Eq. (15), the S operator depends
on the velocity vector, too. Hence, there will be nonzero blocks in the velocity column of the temperature row of the Jacobian.
In this way, one can see which block will be nonzero in the local system. Then, the inverse of the local systems on each ele-
ment Xi (of size 30� 30) is computed by a direct linear solver.

4. Numerical analysis

In this section we will present numerical results of benchmarking type for several problem settings. The first is the MIT
Benchmark 2001 [5] where we demonstrate that our non-isothermal code can reproduce the benchmark results. Then, we
perform numerical simulations for a problem with temperature and shear dependent viscosity. Finally, we add a dissipation
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term into the energy equation in order to have the effect of viscous heating along the fluid flow and perform corresponding
numerical simulations.

4.1. MIT Benchmark 2001

The MIT Benchmark 2001 [5] describes heat driven cavity flow in a 8:1 rectangular domain at near-critical Rayleigh num-
ber. Why near-critical? Because the onset of thermal convection will occur at the critical number, beyond that non-periodical
up to turbulent flow is resulting.

The geometry of the problem is very simple (see Fig. 2) but leads nevertheless to complex multiscale phenomena. The
velocity vector at the upper and bottom wall is zero which describes a non-slip condition. The left wall is heated while
the right wall is cooled by a prescribed non-dimensional temperature of �0.5 and 0.5. Gravity is applied downwards. The
top and bottom of the walls are insulated, which means that homogeneous Neumann boundary conditions for the temper-
ature are set and hence no heat is going outside of the wall. The initial condition is the zero vector for all variables. Physically
relevant variables which are to be computed are the velocity and temperature at point 1, and the Nusselt number along both
sides of the wall. The time step is chosen so that there are enough data points in one oscillation of the resulting variables to
graphically postprocess all quantities and so that smaller time steps do not significantly improve the solutions with respect
to quantitative measurements. After comparison with the results from Davis [10], Gresho [13], Turek [26] and Le Quéré [24]
we choose approximately 34 time steps in one oscillation which corresponds to DT ¼ 0:1 as time step size.

Several meshes have been used to perform the spatial discretization (see Table 1). The coarse mesh has approximately 1:5
x-to-y ratio of grid points and decreases gradually towards the walls (see Fig. 3).

This figure also describes how the local refinement is generated for some exemplary meshes. We set the local refinement
to be at both sides of the wall. This judgment is subject to the Nusselt number which is of interest for the engineer,
NuðtÞ ¼ 1
H

Z H

0

@H
@x

				 				
x¼0;W

dx; ð19Þ
where H and W are the height and the width of the domain. The meshes are denoted by ‘nR_ai’ for i local refinement steps
after n regular refinements. However, we have to explicitly state that the level of grid refinement towards the walls has not
been chosen on the basis of an a posteriori error indicator, but a priori only, since it was the primary aim of these studies to
show that local alignment together with hanging nodes can be directly integrated into this monolithic approach without any
loss of efficiency while gaining higher accuracy. The combination with user-defined a posteriori error control mechanisms
which lead to an automatic grid refinement, resp., grid coarsening is part of future studies with this full Galerkin approach.

The level 2 mesh (2R, meaning ‘2 times regular refinement’ of the coarse mesh) is used to perform the first computation
until the solution reaches a periodical result (after 1500 non-dimensional time units), then the last output result is used as a
gravity

y

x
1

8

0

1

2

Fig. 2. Geometry and coarse mesh.



Table 1
Contributor’s and our testing meshes.

Author Turek Davis Gresho Le Quéré
Mesh 128 � 704 83 � 403 105 � 481 48 � 180
Mesh Elements Nodes Edges Dof

2R 1408 1513 2920 21,747
2R_a1 1936 2043 3978 29,679
2R_a5 17,776 17,891 35,666 267,327

3R 5632 5841 11,472 85,731
3R_a1 6688 6899 13,586 101,583
3R_a4 21,472 21,689 43,160 323,379

4R 22,528 22,945 45,472 340,419
4R_a1 24,640 25,059 49,698 372,111
4R_a3 37,312 37,735 75,046 562,215

Coarse Mesh 1R Mesh 2R_a1 Mesh2R Mesh

Fig. 3. Several hierarchies and types of meshes.
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starting point for the following computation. Note that regular refinement doubles the number of elements in both x- and y-
direction. The results of the MIT Benchmark 2001 configuration computed by our new approach oscillate periodically in time
(see Fig. 4) and are presented in Table 2.

Several comparisons have been made to see the difference from the other references. In [13] it is mentioned that the Q 2P1

element with coarse mesh (27 � 121) performs poorly in the sense that the results show too low amplitudes for velocity and
temperature at point 1 (0.00542 and 0.00442). In contrast, we observe good results even with the level 2 mesh (16 � 88).
They also calculated Nusselt numbers which are slightly different from the reference, see [24]. In fact, we produce the same
results (2R,3R,4R), but only as soon as we introduce local refinement near the wall, the Nusselt number improves strongly
even with the level 2 mesh. It is obvious that the Nusselt number calculated on levels 3 and 4 (3R and 4R) can be improved by
using the level 2 mesh with local refinement (2R_a1 and 2R_a5).

We believe that without local grid refinement we might have to use level 5 or higher to produce nearly the same Nusselt
numbers as the one produced by Le Quéré. This information shows us the expected result that local grid refinement helps a
lot for this test configuration. The time step is not an issue as long as we put enough time steps over one period. Twenty up to
fourty time steps are already sufficient to produce excellent results for this problem, and no specific gain/loss in the quality
of the Nusselt number has been observed if we increase/decrease the number of time steps in one period (see [8]). Summa-
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Fig. 4. Temperature oscillations at point 1.



Table 2
Results of the MIT benchmark 2001 simulations.

Author u1 H1 �Nu Period

Turek 0.0572 0.2647 4.5791 3.422
Davis 0.0563 0.2655 4.5796 3.412
Gresho 0.05665 0.26547 4.5825 3.4259
Le Quéré 0.056356 0.26548 4.57946 3.4115

2R 0.058139 0.26539 4.66245 3.4000
2R_a1 0.057674 0.26538 4.59295 3.4214
2R_a5 0.057490 0.26540 4.57941 3.4214

3R 0.056787 0.26548 4.59318 3.4214
3R_a1 0.056665 0.26546 4.58155 3.4214
3R_a4 0.056591 0.26549 4.57967 3.4214

4R 0.056451 0.26549 4.58158 3.4200
4R_a1 0.056394 0.26546 4.57994 3.4154
4R_a3 0.056372 0.26546 4.57969 3.4214

Table 3
Mesh information for channel problem.

Mesh Elements Nodes Edges Dof

1R 752 1095 1846 13,335
1R_a1 2264 2849 5112 37,467
1R_a2 5264 5847 11,110 82,455

2R 3008 3693 6700 49,227
2R_a1 6008 6691 12,698 94,215

3R 12,032 13,401 25,432 188,691
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rizing, we observe differences from the reference result with 0.02% for velocity u1 and with 0.003% for temperature H1; and
we are very close with 0.004% difference for the Nusselt number.

4.2. Temperature-dependent viscosity in a heat exchanger

After validating the proposed monolithic approach for this standard MIT Benchmark 2001, we proceed with more com-
plex non-isothermal problems to demonstrate the flexibility and efficiency for such configurations. As a first example, we
consider flow with temperature-dependent viscosity through small channels which is a very common shape of heat
exchangers and which leads already to complex flow behavior. In order to study this behavior, a flow configuration is set
in which different temperature values as Dirichlet boundary data at each of the channels is implemented. Qualitatively, it
is expected that the flow will stop when the viscosity grows to a large value caused by temperature differences. Therefore,
for prototypical test simulations the viscosity is prescribed through the relation
g ¼ g0e
a1þ

a2
a3þH

� �
ðb1 þ b2kDkÞ�b3 ; ð20Þ
where a1; a2; a3 and b1; b2; b3 are specific material parameters, and kDk ¼
ffiffiffiffiffiffiffiffiffiffiffi
DijDij

p
(see [8]] for more details).

Here, D ¼ 1
2 ðruþruTÞ is the usual symmetric part of the gradient velocity. Fig. 5 gives an example for specific material

parameters which however does not yet correspond to a certain type of fluid, because we do not investigate experimental
data at the moment. Further examples with more general parameter settings, particularly with additional shear dependent
behaviour, are examined in [9].

We consider the specific geometry (width = 3.5 and length = 44 in non-dimensional units) and setting given in Table 3
and Fig. 6 which shows four channels installed for low Reynolds number flow (Re � 14). The hot fluid enters the inflow sec-
tion with non-dimensional temperature H ¼ 250 and with a parabolic profile of velocity, and the heat is then distributed to
all channels. We specify Dirichlet data for the temperature (H ¼ 190) to all channels except to the second channel (H ¼ 180)
to control the fluid flow at this pipe. This slightly different temperature will nevertheless increase the viscosity difference to
‘stop’ the flow at the corresponding channel. We present in Fig. 7 the resulting flow which almost stops at the second channel
caused by a locally growing viscosity. In the left figure, we start with prescribing the same temperature (H ¼ 190) to all
channels (the viscosity value is set to 0.001 at all channels) while in the right figure, we change the temperature at the sec-
ond channel to H ¼ 180. Hence, viscosity at this channel grows to 0.0144 (� 14 times bigger than before), and finally the
flow is ‘stopped’ at this channel.

On this geometry, we compute for mesh 1R, 2R, 3R, 1R_a1, 1R_a2 and 2R_a1 (see Fig. 8). The local refinement is set for
channels 1, 3, and 4. All initial solutions start from zero. Table 4 shows how the proposed method converges with respect to a
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given number of digits for the linear multigrid solver. Here, #NL denotes the number of Newton iteration, while #MG pre-
sents the averaged number of multigrid iterations per nonlinear step. We can see from Table 4 that the local refinement does
not disturb the multigrid convergence. The memory requirement of our computer is still capable to run a direct linear solver
(UMFPACK) for this problem at least up to three refinements. In our case, we can force multigrid by decreasing the linear
tolerance to get close to UMFPACK results with respect to the number of nonlinear iterations. It is clear that for linear tol-
erance of TOL ¼ 10�8 the computation needs more or less the same number of nonlinear iterations as with UMFPACK. For this
0.0215

0.0143

0.0072

0.0

0.0268

0.0179

0.0089

0.0

Fig. 7. The Euclidean norm of velocity. Left: The flow is not blocked. Right: The flow at the second channel is blocked.
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Fig. 8. All computed meshes.



Table 4
#NL/#MG for different levels, with Tol denoting the linear stopping criterion.

Tol/level 1R 2R 3R 1R_a1 1R_a2 2R_a1

10�1 10/1 9/1 10/1 9/1 9/1 8/1
10�2 7/1 7/2 7/2 7/1 7/1 7/2
10�3 6/1 6/2 6/3 6/1 6/1 6/2
10�8 5/5 5/6 5/8 5/4 5/4 5/5

UMFPACK 5/– 5/– 4/– 5/– 5/– 5/–
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small problem, UMFPACK is (still) faster than our current multigrid implementation with respect to computation time. In the
future, for large three dimensional problem, we plan to update our multigrid approach focusing on fast linear iterative solver.

In the following, we also test this principle on a more complex geometry which has more channels in it. This configuration
is prototypically used in chemical micro-reactor processes. Fig. 9 shows typical flow profiles when we simulate the flow with
constant viscosity ða1 ¼ a2 ¼ b3 ¼ 0Þ, while in Fig. 10 we try to stop the flow of the fluid through all channels which lay in the
middle of the geometry (white color) and allow the fluid to flow only through the top and bottom channels of the geometry
(dark color), again by prescribing different wall temperature values as boundary condition. Both figures and Fig. 11 show
clearly the different flow profiles with respect to the different parameters governing the viscosity. This leads to the idea
of a ‘non-mechanical valve’ which can be controlled by setting the outside temperature only. As a prototypical application,
one may think of hot pattex material (for glue purposes) which can flow when the temperature increases and which will
become an elastic solid when the temperature decreases, thus stopping the flow.

4.3. Viscous dissipation term inside the energy equation

Finally, we analyze the effect of adding a viscous dissipation term into the equation of energy where at the moment the
stress tensor is just the symmetric part of the velocity gradient (see Eq. (21)). The additional term has the physical meaning
of producing viscous heat along with the fluid flow [22]. The heat which is generated from this friction may dramatically
change the temperature and velocity profile of the flow which is of interest in the study of polymer flow. Hence, the new
equation can be rewritten as
Fig. 10. Streamlines for the ‘stopping’ flow with different temperature boundary values.

Fig. 9. Streamlines for flow with constant viscosity.
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@H
@t
þ u � rH ¼ D : Dþr � ðkrHÞ: ð21Þ
The new equation is comparable with Eq. (3) where k � 1=
ffiffiffiffiffiffiffiffiffiffiffi
RaPr
p

but with an additional term which is defined by the scalar
product of the symmetric part of the velocity gradient with itself. We test the modified model with constant viscosity
ðg ¼ g0Þ for the well-known 4 to 1 contraction geometry and apply a non-slip condition at the upper wall while prescribing
the half of the parabolic velocity profile at the inflow due to its symmetry (see Fig. 12). By neglecting the time derivative,
@H
@t ¼ 0, we directly calculate the stationary result with the proposed Newton-multigrid solver. Although we prescribe zero
temperature at the inflow, along the channel heat is produced as the friction becomes higher. Generally, it gives additional
heat locally as the material begins to flow. We refer to Fig. 13 to show qualitatively the effect of the additional term. One can
see from the cutline diagram (y ¼ 0) that near the inflow ð�20 < x < 0Þ heat is produced slowly, but that after entering the
contraction ð0 < x < 20Þ there is a big gradient of temperature up to the end of the channel. The component of velocity and of
the stress tensor also show that the computation may face numerical difficulties around the entrance. The characteristic of
such a geometry appears clearly from the entrance point where the sharp corner point may cause numerical problems in
viscoelastic flow since then the stress tensor will raise to a huge value (see Fig. 14). That is why we make local refinement
around the entrance corner and also at the end of the channel to get a better capture of the temperature field. Table 5 shows
how the Newton-Multigrid and Newton-UMFPACK solver converge for this kind of problem. It is clear that our proposed
method seems to be robust with respect to using local refinement. As a test configuration, we use low inertia flow,
Re � 2:5, which is as typically controlled by the velocity profile, characteristic length of the width of channel, and the given
viscosity. The meshes as well as the isoline of axial stress tensor are shown in Fig. 15 which stresses again the role of adaptive
refinement. Here, mesh 1R a1 is comparable with mesh 2R, and mesh 1R a2 or mesh 2r a1 are comparable with mesh 3R.
This situation is also illustrated in Fig. 16 where the axial stress profiles are compared along the entrance line ðx ¼ 0Þ.

These prototypical studies have to be seen as preparing simulation for more complex flow configurations for which we
will extend T to a model which adds the elastic part of a viscoelastic stress tensor rp. The stress tensor will replace D to pro-
Fig. 12. Geometry of the 4 to 1 contraction configuration.

stress11cutline

-1.50

-1.00

-0.50

0.00

0.50

-20.00 -10.00 0.00 10.00 20.00

st
re

ss
 1

1

0.00
2.00
4.00
6.00
8.00

10.00
12.00

-20.00 -10.00 0.00 10.00 20.00 -20.00 -10.00 0.00 10.00 20.00

te
m

pe
ra

tu
re

0.00

0.50

1.00

1.50

2.00

ve
lo

ci
ty

-x

Fig. 13. The cutlines of T11; h; and ux .



Table 5
#NL/#MG for different levels, with Tol denoting the linear stopping criterion.

Tol/level 1R 2R 3R 1R_a1 1R_a2 2R_a1

10�1 11/1 12/2 12/2 13/1 12/1 11/1
10�2 9/2 10/3 10/4 9/2 9/2 9/2
10�3 9/4 9/5 9/6 9/2 9/3 9/3
10�8 9/13 9/17 9/19 9/7 9/7 9/9

UMFPACK 9/– 9/– 9/– 9/– 9/– 9/–

Fig. 14. 3D representation of stress tensor component for the 2R a1 mesh.

Fig. 15. Isolines for the stress tensor on several different meshes. Note the different scale between mesh 1R, 2R, and 3R.
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duce a better physical meaning of additional heat along the flow due to viscous dissipation. And since the stress tensor will
raise at the entrance point of the geometry, the viscous dissipation term will be an interesting subject for the numerical tests
(see [9]).

5. Conclusion

We have presented new FEM simulation techniques for non-isothermal viscous flow described by the Navier–Stokes
equations and the Boussinesq approximation, hereby allowing temperature and shear dependent behaviour of the viscosity.
The resulting discrete problems, after discretization in space and time, are solved via Newton iteration and special mono-
lithic multigrid methods which are adapted to the utilized Q 2P1 finite element pair. Numerical results for validation of
the methodology are provided for the MIT Benchmark 2001 configuration which leads to periodically oscillating flow behav-
iour. Here, the high order FEM approach together with 2nd order fully implicit time stepping and local grid refinement leads
to very accurate simulations for this dynamical configuration with many different flow scales. Additionally, we simulate two
additional problems with prototypical temperature-dependent viscosity and with dissipation term inside the energy equa-
tion which can be seen as a first step towards viscoelastic flow. Exemplary results are shown to demonstrate the numerical
behaviour of this fully implicit monolithic FEM-multigrid approach which can be extended to more complex flow problems
in a quite straightforward way.
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